Problem 13

If you invest a dollar at " 6% interest compounded monthly," it amounts to $(1.005)^{n}$ dollars after n months. If you invest $\$ 10$ at the beginning of each month for 10 years (120 months), how much will you have at the end of the 10 years?

Solution

Suppose you invest x dollars at the beginning of month 1: $P(0)=x$. By the end of month 1 , the principal will be $P(0)$ plus the earned interest $i P(0)$ plus the newly invested x dollars.

$$
P(1)=[P(0)+i P(0)]+x=(2+i) x
$$

By the end of month 2, the principal will be $P(1)$ plus the earned interest $i P(1)$ plus the newly invested x dollars.

$$
P(2)=[P(1)+i P(1)]+x=\left(3+3 i+i^{2}\right) x
$$

There doesn't seem to be an obvious pattern to determine $P(n)$, so formulate a boundary value problem for it.

$$
P_{n+1}=(1+i) P_{n}+x, \quad P_{1}=(2+i) x
$$

This is a first-order linear difference equation, which can be solved with a summing factor.

$$
S=\frac{1}{\prod_{j=1}^{n}(1+i)}=\frac{1}{(1+i)^{n}}=(1+i)^{-n}
$$

Multiply both sides of the difference equation by S.

$$
(1+i)^{-n} P_{n+1}=(1+i)^{1-n} P_{n}+x(1+i)^{-n}
$$

Bring the term with P_{n} to the left side.

$$
(1+i)^{-n} P_{n+1}-(1+i)^{-(n-1)} P_{n}=x(1+i)^{-n}
$$

Write the left side as a discrete derivative. (Note: $D P_{n}=P_{n+1}-P_{n}$.)

$$
D\left[(1+i)^{-(n-1)} P_{n}\right]=x(1+i)^{-n}
$$

Sum both sides from 1 to $n-1$.

$$
\begin{gathered}
(1+i)^{-(n-1)} P_{n}-(1+i)^{-(1-1)} P_{1}=\sum_{j=1}^{n-1} x(1+i)^{-j} \\
(1+i)^{-(n-1)} P_{n}-P_{1}=x \sum_{j=1}^{n-1}\left(\frac{1}{1+i}\right)^{j} \\
(1+i)^{-(n-1)} P_{n}=P_{1}+x\left[-1+\sum_{j=0}^{n-1}\left(\frac{1}{1+i}\right)^{j}\right]
\end{gathered}
$$

Evaluate the sum and plug in $P_{1}=(2+i) x$.

$$
(1+i)^{-(n-1)} P_{n}=(2+i) x+x\left[-1+\frac{1-\left(\frac{1}{1+i}\right)^{n}}{1-\left(\frac{1}{1+i}\right)}\right]
$$

Solve for P_{n} and simplify the result.

$$
P_{n}=\frac{x}{i}\left[(1+i)^{n+1}-1\right]
$$

The fact that a dollar invested at " 6% interest compounded monthly" amounts to (1.005) ${ }^{n}$ dollars after n months means that 6% is an annual interest rate.

$$
i=\frac{0.06}{12}=0.005
$$

Therefore, the principal (in dollars) after n months that is compounded monthly at 6% interest and that has $\$ 10$ added monthly is

$$
P_{n}=2010 \times 1.005^{n}-2000 .
$$

After 10 years, or 120 months, it is

$$
P_{120}=2010 \times 1.005^{120}-2000 \approx \$ 1656.99 .
$$

Assuming $\$ 10$ is not put in the account at the end of the 120 th month, the principal will just be about
\$1646.99.

